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Quantification of the effects 
of climatic conditions on French 
hospital admissions and deaths 
induced by SARS‑CoV‑2
Hippolyte d’Albis 1*, Dramane Coulibaly 2, Alix Roumagnac3, Eurico de Carvalho Filho3 & 
Raphaël Bertrand3

An estimation of the impact of climatic conditions—measured with an index that combines 
temperature and humidity, the IPTCC—on the hospitalizations and deaths attributed to SARS‑CoV‑2 is 
proposed. The present paper uses weekly data from 54 French administrative regions between March 
23, 2020 and January 10, 2021. Firstly, a Granger causal analysis is developed and reveals that past 
values of the IPTCC contain information that allow for a better prediction of hospitalizations or deaths 
than that obtained without the IPTCC. Finally, a vector autoregressive model is estimated to evaluate 
the dynamic response of hospitalizations and deaths after an increase in the IPTCC. It is estimated 
that a 10‑point increase in the IPTCC causes hospitalizations to rise by 2.9% (90% CI 0.7–5.0) one week 
after the increase, and by 4.1% (90% CI 2.1–6.4) and 4.4% (90% CI 2.5–6.3) in the two following weeks. 
Over ten weeks, the cumulative effect is estimated to reach 20.1%. Two weeks after the increase in the 
IPTCC, deaths are estimated to rise by 3.7% (90% CI 1.6–5.8). The cumulative effect from the second to 
the tenth weeks reaches 15.8%. The results are robust to the inclusion of air pollution indicators.

SARS-CoV-2 appeared in China in 2019 and has produced a global pandemic—the COVID-19 pandemics—as of 
March  20201. To cope with the disease, unprecedented mobility reduction measures such as lockdowns or curfews 
were implemented in many countries around the world, causing a major financial impact. These measures were 
justified by the fact that population mobility is a key factor for the virus  circulation2, together with population 
density, associated with a higher likelihood of infectious contacts between  people3.

Among other causes, several studies have shown the link between the spread of respiratory viruses and 
climatic  conditions4,5. This is the case of the influenza virus, for which the role of absolute humidity on trans-
mission and seasonality has been  demonstrated6. There are several types of transmission for respiratory viruses, 
but airborne transmission by aerosols (small particles) is more likely to be impacted by meteorological condi-
tions. However, the mechanisms involved in these processes are still poorly understood, which calls for further 
 investigations7.

Concerning the SARS-CoV-2 outbreak, a pioneering  study8 conducted at the beginning of the pandemic 
warned that 90% of infections occurred in areas with temperatures between 3 and 17 °C, with an absolute humid-
ity between 4 and 9 g/m3. Other studies from various countries have linked temperature or humidity to COVID-
19. Most notably, it has been shown that for Northern hemisphere countries with a mean regional temperature 
below 10 °C, a variation of 1 g/m3 of the average absolute humidity can be associated with a variation of 0.15-unit 
in the basic reproduction number—the R0—and an increase of 1 °C can be associated with a 0.16-unit lower  R09.

In the present paper, a statistical investigation is proposed using a recently developed indicator created by 
PREDICT Services, known as the IPTCC, an acronym in French for PREDICT’s Index for COVID-climate 
 transmissivity10. This index was notably used by the Pasteur Institute to refine their models and to integrate an 
environmental factor that aims at better explaining the evolution of epidemiological indexes. Furthermore, the 
integration of the IPTCC into statistical models (such as the Multiple Linear Regression Model and the General-
ized Additive Model) corrected the error between the forecasts and the observations of hospital admissions by 
22% and 13%  respectively11.
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The virus circulation was spatially and temporally irregular across mainland France in 2020. A first wave 
affected the country between March and April 2020, particularly the Paris region and the Northeast half of the 
country. The number of contaminations dropped sharply in late spring and remained considerably low in sum-
mer. Then, a second wave homogeneously impacted the country between October and November 2020. Since 
December 2020, the situation has reached a plateau with a high number of daily cases.

From the meteorological perspective, France is exposed to several climate dynamics. The western shoreline 
has an oceanic climate characterized by mild temperatures and significant rainfall throughout the year. The 
northeast of the country has a semi-continental climate with hot summers and cold winters. The Mediterranean 
climate is characterized by mild winters, warm summers, and less rainfall, which is irregular.

We take advantage of this geographical diversity to conduct a causal analysis of climatic conditions on the 
hospital admissions and deaths induced by SARS-CoV-2. Our approach is based on the estimation of vector 
autoregressive (VAR) models, following an established practice in economics  since12, where they are used to 
quantify an economy’s response to an exogenous structural shock; they are also used in the life sciences (see 
e.g.13,14), and were found to be useful in particular to analyze the dynamics of SARS-CoV-2 (15,16). VAR models 
can be easily used to quantify the effects of climatic conditions on epidemiological variables, as the former are 
clearly exogenous to the latter.

Our analysis is conducted at the regional level to exploit the heterogeneity (both in terms of climatic condi-
tions and prevalence of the virus) across regions and to obtain an estimation that is not biased by sanitary meas-
ures. Over the period considered, mobility restrictions implemented by the government were indeed generally the 
same in all regions of mainland France. Specifically, a strict national lockdown was imposed from March 17, 2020 
to May 11, 2020 and a mild one (with schools that remained open) from October 30, 2020 to December 15, 2020.

Methods
Data. We considered 54 NUTS3 administrative regions (named départements in French) over 42  weeks 
(from March 23, 2020 to January 10, 2021). We did not consider all existing regions, but only the 54 for which 
the IPTCC can be computed. In order to evaluate the consequences of the climatic conditions on the pandemic, 
we used the weekly numbers of hospital admissions and deaths due to SARS-CoV-2 for the same 54 administra-
tive regions considered. The data are official and publicly available at www. data. gouv. fr. The hospitalizations and 
deaths due to SARS-CoV-2 were consistently measured over the period and are thus more reliable than the series 
that report the number of infections, as the latter highly depend on the availability of tests and on the popula-
tion’s willingness to get tested. Daily data are available since March 19, 2020, but we chose to use the weekly 
frequency in order to avoid a seasonal effect induced by lower reporting during weekends.

The meteorological data came from the 63 Météo-France stations. These stations are homogeneously distrib-
uted over mainland France and they were chosen in order to better represent the diversity of the country’s climate. 
The dataset provides a daily average for air temperature (measured in °C) and relative humidity (measured in 
%); these values were calculated as an average of the daily maximum and minimum values of temperature and 
relative humidity. With them, it is easy to compute the daily absolute humidity for each station, measured in g/
m3, using the Clausius-Clapeyron  equation8.

In order to analyze the potential relation between climate conditions and virus transmission, the IPTCC was 
created to characterize the potential for virus transmission according to climatic conditions.  Following10, the 
IPTCC is a function of absolute humidity (AH), relative humidity (RH), and temperature (T), and the formula 
can be written as follows:

The IPTCC is thus maximal when the temperature reaches 7.5 °C and the relative humidity 75%. The IPTCC 
is available on a daily basis since January 1, 2020 for all meteorological stations. Then, for each of the 54 regions 
considered, we built a weekly indicator computed as the average of the daily IPTCC. Visualizations of the IPTCC 
through 2D and 3D representations are provided in the Supplementary Materials (Figs. A1 and A2).

As a preliminary step, the evolution of the variables over the period considered can be plotted. The figures 
for each of the 54 regions are reported in the Supplementary Materials (Fig. A3). To summarize them, Fig. 1 
reports weekly hospitalizations and deaths (i.e. the total for the 54 regions) and the weekly IPTCC (the average 
for the 54 regions). The correlation between the three series is quite remarkable (see Table A2 for the coefficients). 
Most notably, the peaks in hospitalizations and deaths correspond to periods during which the IPTCC is high on 
average. Conversely, throughout spring and summer, hospitalizations, deaths, and the IPTCC are low. We also 
notice that the IPTCC is more volatile than the epidemiological series. Lastly, the evolution of the IPTCC seems 
to precede those of hospitalizations and deaths, which is probably due to the time between contamination, the 
incubation period, and a possible worsening of the disease.

To go beyond this first graphical analysis and investigate how climatic conditions affect the spread and sever-
ity of SARS-CoV-2, we developed a time series analysis. This was done in two steps. Firstly, we demonstrated a 
causal relationship between the IPTCC and the hospitalization and deaths, and then we evaluated the responses 
of the latter to an increase in the IPTCC.

Granger causality. We firstly explored whether climate conditions Granger-cause hospitalizations and 
deaths from SARS-CoV-2, i.e. whether the past values of climatic conditions contain information that are help-
ful to predict hospitalizations or deaths given that past hospitalization and death information are considered.

To test for Granger causality from climate conditions to hospitalizations and deaths, we considered the fol-
lowing panel dynamic model using the weekly data for 54 regions, from March 23, 2020 to January 10, 2021.

IPTCC = 100 ∗ e
− 1

2

[

(T−7.5)2

196
+

(RH−75)2

625
+

(AH−6)2

2.89

]

.

http://www.data.gouv.fr
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where i and t  stand respectively for the indices of region and time; yit ∈
{

hospit , deathit
}

 with hospit and deathit 
respectively denote the logarithm of 1 plus the number of hospitalizations and deaths; clit represents the IPTCC 
index; µi are regional fixed effects, δit are regional-specific time (linear) trends, and ηt is the common national 
time (week)-specific effect including seasonal effect.

It is worth noting that taking the logarithm of hospitalizations and deaths allows, through regional fixed 
effects ui , to account for regional heterogeneities such as area, population, or density, which are roughly stable 
over the considered period. Moreover, including the region-specific time trend δi .t with the log specification may 
capture a potential exponential growth of the disease spreading that could be region specific. Finally, using ηt 
allows taking into account the national interdependence (including any seasonal effect) of the disease spreading 
across regions. Preliminary diagnostics (panel unit root tests) rejected the null hypothesis of unit root for the 
de-trended variables (with a region-specific linear trend). We then considered variables in level or log level while 
controlling for region heterogeneity (by introducing region-specific effects and region-specific time trends) and 
cross-region interdependence (by introducing week-specific effects).

Let θ =
(

α1, . . . ,αp,β1, . . . ,βp
)′ be the vector of parameters across cross-section units to be estimated. Given 

the sizes of the cross-region dimension N and the time dimension T in the panel data ( N = 54 and T = 42 ), in 
order to deal with short-T dynamic panel data bias or the so-called Nickell  bias17, we used the bias-corrected 
fixed-effect estimator developed  by18, which is appropriate when 0 < limN/T < ∞ , as is the case here  (see19). 
This technique consists in removing the asymptotic bias of least square dummy variable (LSDV) or fixed effect 
estimator (with region-specific time trends and time-specific effects) of θ . The LSDV estimator of θ which is 
given by the ordinary least square (OLS) regression of ỹit on ỹit−1, . . . , ỹit−p,

˜clit−1, . . . , ˜clit−p where x̃it is a 
transformation of xit after removing region specific effects and trends and the national average for each week 
(this transformation corresponds to include µi , δi · t , and ηt).

Based on the Bayesian information criterion (BIC) and the Hannan-Quinn information criterion (HQC), 
we set the lag length p to 3, so that there is no serial correlation in the errors. Taking a lag length higher than 3 
does not alter our findings.

In Eq. (1), the null hypothesis of no Granger causality from the climate conditions ( clit ) to hospitalizations 
or deaths ( yit = hospit or deathit) is H0 : β1 = β2 = . . . = βp . The null hypothesis of no Granger causality can 
be expressed as Rθ = 0p×1 where R is a known 

(

p× 2p
)

 matrix with R =
[

0 : Ip
]

 . The test statistics, which is a 
Wald statistics, is given by W = θ̂ ′R′

[

σ̂ 2R
(

X ′X
)−1

R′
]−1

Rθ̂ where X is a 
(

N
(

T − p
)

× 2p
)

 matrix of regressors 
ỹit−1, . . . , ỹit−p,

˜clit−1, . . . , ˜clit−p in column and σ̂ 2 is the estimated variance of residual. Under the null hypothesis 
W follows a chi-squared distribution of a degree of freedom equal to p , i.e. the number of constraints to be tested 
that corresponds to the lag length.

(1)yit =
p
∑

s=1

αsyit−s +

p
∑

s=1

βsclit−s + µi + δi .t + ηt + εit , i = 1, . . .N and t = 1, . . . ,T

Figure 1.  Comparison of the time series of total hospitalizations and deaths and the average IPTCC, March 23, 
2020 to January 10, 2021.
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The VAR model. To analyze the dynamic responses of the epidemiological variables to a change in the 
IPTCC, we estimated a panel vector autoregressive (VAR) model where IPTCC ( cl ) is considered exogenous. It 
can be written as:

where Zit =
(

hospit , deathit
)′ is a 2-dimensional vector of endogenous variables including the logarithm of 1 

plus the hospitalizations and deaths, where As are (2× 2) matrices of coefficients associated with Zit , bs are (2× 1) 
matrices associated with clit−s , ui =

(

u1i , u
2
i

)′ is a vector of regional fixed-effects; di .t =
(

d1i , d
2
i

)′
.t represent 

region specific-time (linear) trend, ft =
(

f 1t , f
2
t

)

 is a vector of common time (week)-specific effect; vit =
(

v1it , v
2
it

)′ 
is a 2-dimensional vector of errors satisfying E(vit) = 0 and E

(

vitv
′

is

)

= �.1{t = s} for all t  and s.
As mentioned above, preliminary diagnostics (panel unit root tests) rejected the null hypothesis of unit root 

for the de-trended variables (with a region-specific linear trend). Our VAR then considers variables in level or 
log level while controlling for region heterogeneity (by introducing region-specific effects and region-specific 
time trends) and cross-region interdependence (by introducing week-specific effects). Moreover, the model was 
estimated through the bias-corrected fixed-effect estimator developed  by18, and the lag length p was set to 3 based 
on the Bayesian information criterion (BIC) and the Hannan-Quinn information criterion (HQC). Using a lag 
length higher than 3 does not change our findings.

After having estimated model (2), we computed the responses of the endogenous variables (hospitalizations 
and deaths) to an (exogenous) increase in the IPTCC, and the response of deaths to an increase in hospitaliza-
tions. The responses of hospitalizations and deaths (endogenous variables) to climate conditions (exogenous 
variable) is part of the multiplier analysis; for this reason, there is no need to identify the structural shocks of 
the endogenous variables  (see20, Sect. 10.6). However, to identify the response of deaths to hospitalization, it is 
necessary to identify the structural shocks ηit of these two endogenous variables as follows: ηit = A0vit where 
A0 is 2× 2 matrix such that E(ηitη

′

it) = I2 or A0A
′

0 = � . We identified A0 based on Cholesky decomposition 
by setting A0 as the unique lower-triangular Cholesky factor of � . This identification relies on the reasonable 
assumption that hospitalizations can influence deaths contemporaneously, while deaths can potentially influence 
hospitalizations only with lags.

Results
Causality between the IPTCC and the epidemiological variables. The results of Granger non-cau-
sality from climate conditions to hospitalizations and deaths induced by SARS-CoV-2 are reported in Table 1. 
At the 5% level of significance, we cannot accept the null hypothesis of no Granger causality from climate condi-
tions to either hospitalizations or deaths. In other words, past information on climate conditions is helpful to 
predict hospitalizations and deaths even when accounting for past hospitalization and death information.

Although the Granger causality analysis conducted above indicates how the past values of the IPTCC are 
useful to predict hospitalizations and deaths, it does not provide any evaluation of the response of hospitaliza-
tions and deaths to a change in the IPTCC. This is done with the VAR model.

Estimations of the epidemiological responses to a change in the IPTCC . We consider a 10-point 
increase in the IPTCC, an increase which is understood as relative to the average IPTCC value over the period 
considered (namely 25.5). One should note that a 10-point increase correspond to rather small changes in 
temperature and humidity. For instance, the IPTCC moved from 42 to 52 in the Seine-Maritime département 
between April 6 and April 13 of 2020; this change was due to a decrease in temperature from 13 to 11 °C and an 
increase in relative humidity from 73 to 75%. The largest increase (76.9) was recorded in the Finistère départe-
ment between May 4 and May 11 of 2020 when temperature fall from 16 to 10 °C and relative humidity declined 
from 83 to 68%. The largest decline (− 66.9) was observed in the Hérault département between December 7 and 
December 14 of 2020 when temperature rose from 6 to 12 °C and the relative humidity from 76 to 91%.

The dynamic responses of hospitalizations and deaths to a 10-point increase in the IPTCC are displayed in 
Fig. 2. The upper panel represents the estimated impact of the IPTCC on hospitalizations. Week 0 is the week 
when the increase occurs. We observe that the response of hospitalizations is delayed but quite persistent: it is 
significantly positive from one week after the increase until at least 10 weeks later. In terms of magnitude, we 
estimate that hospitalizations rise by 2.9% (90% CI 0.7–5.0) one week after the increase in the IPTCC, and by 
4.1% (90% CI 2.1–6.4) and 4.4% (90% CI 2.5–6.3) in the two following weeks. Over ten weeks, the cumulative 
effect is estimated to reach 20.1%. Compared to their average value over the period, i.e. 147 individuals per week 
and region, this represents 30 individuals. Note that to evaluate e.g. the effect of a 50-point increase that would 

(2)Zit =
p
∑

s=1

AsZit−s +

p
∑

s=0

bsclit−s + ui + di .t + ft + vit , i = 1, . . .N and t = 1, . . . ,T

Table 1.  Granger causality from the IPTCC to hospitalizations and deaths. The test statistic is a Wald statistic 
which follows, under the null hypothesis, a chi-squared distribution of 3 (the number of constraints that 
corresponds to the lag length).

Hypothesis Test statistics P-value

IPTCC does not Granger-cause hospitalizations 22.044 0.000

IPTCC does not Granger-cause deaths 10.815 0.013
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put the IPTCC over 75, our estimates should simply be multiplied by 5. The cumulative effect on hospitalizations 
is thus expected to reach 100%.

The middle panel of Fig. 2 represents the estimated impact of the same 10-point increase in the IPTCC on 
deaths. The impact is also positive but is further delayed, as it becomes positive as of the second week after the 
increase in the IPTCC. That week, we estimate that the deaths increase by 3.7% (90% CI 1.6–5.8). The cumulative 
effect from the second to the tenth weeks reaches 15.8%. Compared to their average value over the period, i.e. 
25 individuals per week and region, this represents 4 individuals. The link between hospitalizations and deaths 
is further investigated in the bottom panel of Fig. 2, which represents the response of the number of deaths to a 
1% increase in the number of hospitalizations. We observe an immediate response, of magnitude 0.21%, which 
grows up to 0.28% the second week, and then decreases. These last evaluations are roughly consistent with the 
existing evaluations (21, among others); they are not immediately comparable since we take into account the 

Figure 2.  Dynamic responses of hospitalizations and deaths to a shock on the IPTCC. Note: The solid line gives 
the estimated impulse responses. The dashed lines give the 90% confidence intervals generated by Monte Carlo 
with 5000 repetitions. The size of the increase in the IPTCC is set to a 10-point increase. The size of the increase 
in hospitalizations is set to a one-percent increase. The responses are the percentage change in the number of 
hospitalizations and deaths.
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reaction of hospitalizations to their own change. The existence of persistence in the series explains why our 
evaluation is slightly higher.

Sensitivity and robustness analysis. The sensitivity and robustness of our findings were assessed by 
analyzing the dynamics under alternative proxies for climate conditions and by considering the environmental 
pollution as a possible interfering variable.

Firstly, it seems that alternative indicators for climatic conditions are less effective than the IPTCC to capture 
the effect of climate on the epidemiological dynamics. We exemplified this with two alternative indicators. Ini-
tially, we used a ‘false’ IPTCC index computed using aberrant target values for temperature and humidity. The 
‘false’ IPTCC reaches 100 when the temperature reaches 30 °C and the relative humidity 20%. We obtained that 
hospitalizations no longer respond significantly to the indicator (see Fig. A4 in the Supplementary Materials). 
Then, we replaced the IPTCC by a normalized temperature index computed as Tn = 100 · e−(T−7.5) , and therefore 
abstracted from the humidity variables. We obtained that, after three weeks, the response of hospitalizations 
becomes significant, but the effects are less clear and the magnitude is less important (see Fig. A5 in the Sup-
plementary Materials). This confirms that, although partly correlated, temperature and humidity are both useful 
when combined in a single indicator to evaluate the effects of climate on epidemiological variables.

Secondly, it is important to investigate whether our results could be biased by some omitted-variables. In 
particular, environmental pollution, whose effect on respiratory diseases is well established (see e.g.22), has been 
recently shown to be correlated with the prevalence of COVID-19 (23–25). We have thus estimated extended ver-
sions of our models in order to take into account the evolution of the environmental pollution. More specifically, 
we have collected weekly averages of the concentration of atmospheric particulate matter  (PM10 and  PM2.5), of 
nitrogen dioxide  (NO2) and of ozone  (O3) for a subsample of the regions we considered. We found that, at the 5% 
level of significance, we still cannot accept the null hypothesis of no Granger causality from climate conditions to 
either hospitalizations or deaths (Table A3 in the Supplementary Materials). Moreover, the dynamic responses 
of hospitalizations and deaths to a 10-point increase in the IPTCC are qualitatively similar to those displayed in 
Fig. 2 (Fig. A6 in the Supplementary Materials). Our results are thus robust to the inclusion of environmental 
pollution variables in the models. Interestingly, we also obtained that the null of hypothesis of no Granger cau-
sality from air pollution to either hospitalizations or deaths cannot be rejected but that, on the short run, the 
concentration of atmospheric particulate matter has an impact on hospitalizations and deaths.

Discussion
By testing the statistical impact of the IPTCC on hospital admissions and deaths induced by SARS-CoV-2 in 
France, this study confirms the potential role of temperature and humidity in the airborne spread of SARS-
CoV-2 by highlighting that there is a particular combination of the two variables that creates a favorable ground 
for the transmission of the disease: when the distance toward a temperature of 7.5 °C and a relative humidity of 
75% reduces, hospital admissions and deaths increase. With respect to earlier studies, it provides strong causal 
evidences and offers a new quantification of the effect of the climate factors on the dynamics of the disease. Most 
notably, it characterizes the time delay between the climatic conditions and the hospitalizations and deaths and 
include air pollution indicators as controls.

This study has several limitations, notably it was performed for continental France, and needs to be repli-
cated in other countries in order to ensure that the benchmark combination for which the IPTCC is maximal 
(temperature at 7.5 °C and relative humidity at 75%) is same. Furthermore, although the model is using regional 
data, the results are not region specific. They should be interpreted as the response of an average region in France. 
More data are needed in order to be able to characterize the regional differences. Moreover, the study covers a 
period that starts in March, 2020 and ends in January, 2021. It thus does not take into account the more recent 
virus variants nor the vaccination campaign. More generally, it is clear that anthropogenic factors related to the 
behavior and respect of sanitary recommendations among the citizens, the conditions of hygiene, the access to 
care, and the quality and resources of the health services have an essential impact on COVID-19 transmission 
and other indicators. Therefore, the IPTCC should not be taken out of context, and it is not the sole condition 
or explanation for the crisis the world has been facing. The weather is not a silver bullet.

Nonetheless, incorporating meteorological components into the overall analysis could allow a better surveil-
lance and prediction of the dynamic of the pandemic, as exemplified here by the evolution of the number of 
hospitalizations. As there is a delay between the IPTCC time series and hospitalizations, our index could help 
to forecast the pressure on the health system 2 to 3 weeks beforehand. This can be implemented and continu-
ously updated very easily using the temperature and humidity forecasts provided by Météo-France stations. The 
evolution of the local or regional weather is a factor that could help the government to predict future epidemic 
waves and make decisions and communicate to protect population against SARS-CoV-2, or other respiratory 
diseases spread by airborne transmission.
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